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ESTIMATES OF KERNELS FOR SCHRÖDINGER SEMIGROUPS

MIŁOSZ BARANIEWICZ

We consider the Schrödinger operator of the form H = −∆+ V acting in L2(Rd, dx),
d ≥ 1, where the potential V : Rd → [0,∞) is a locally bounded function. The corre-
sponding Schrödinger semigroup

{
e−tH : t ≥ 0

}
consists of integral operators, i.e.

e−tHf(x) =

∫
Rd

ut(x, y)f(y)dy, f ∈ L2(Rd, dx), t > 0. (1)

I will present new estimates for heat kernel of ut(x, y). Our results show the contribution
of the potential is described separately for each spatial variable, and the interplay between
the spatial variables is seen only through the Gaussian kernel.

I will present applications of those theorems for two common classes of potentials. For
confining potentials we get two sided estimates and for decaying potentials we get new
upper estimate.

The poster is based on joint work with Kamil Kaleta [1].
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THE DOUGLAS FORMULA IN Lp

DAMIAN FAFUŁA (AND KRZYSZTOF BOGDAN, ARTUR RUTKOWSKI)

The classical Douglas formula relates the energy of the harmonic function u on the unit
disk B(0, 1) ⊂ R2 to the energy of its boundary values g on the boundary of the disk,
identified with the torus [0, 2π):∫

B(0,1)

|∇u(x)|2 dx =
1

8π

∫ 2π

0

∫ 2π

0

(g(η)− g(ξ))2

sin2((ξ − η)/2)
dη dξ. (1)

The formula is important in the trace theory for Sobolev spaces, since the left-hand side of
(1) is the classical Dirichlet integral and the right-hand side is equivalent to the Gagliardo
form in H1/2(∂B(0, 1)).

We propose an extension of (1):∫
B(0,1)

|∇u(x)|2|u(x)|p−2 dx =
1

2(p− 1)

∫ 2π

0

∫ 2π

0

(g(η)⟨p−1⟩ − g(ξ)⟨p−1⟩)(g(η)− g(ξ))

4π sin2((ξ − η)/2)
dη dξ.

Here and below, we assume that p ∈ (1,∞) and a⟨κ⟩ = |a|κ sgn(a) for a, κ ∈ R. In fact,
we prove that for all open bounded C1,1 sets D ⊆ Rd with d ≥ 1, and harmonic functions
u in D with boundary values g,∫
D

|∇u(x)|2|u(x)|p−2 dx=
1

2(p− 1)

∫
∂D

∫
∂D

(g(z)⟨p−1⟩−g(w)⟨p−1⟩)(g(z)−g(w)) γD(z, w) dz dw.

Here dz, dw refer to the surface measure on ∂D and
γD(z, w) := ∂z

n⃗PD(·, w),

is the inward normal derivative of the Poisson kernel PD of ∆ =
∑d

i=1
∂2

∂x2
i

for the set D.
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HARDY–STEIN IDENTITY FOR PURE-JUMP DIRICHLET FORMS

MICHAŁ GUTOWSKI

We want to consider regular conservative pure-jump Dirichlet form:

E(u, v) = 1

2

∫∫
E×E\diag

(u(y)− u(x))(v(y)− v(x)) J(dx, dy), u, v ∈ D(E),

under some mild assumptions. Here J is the jumping measure.
Our purpose is to present the Hardy–Stein-type identity∫

E

|f |p dm =

∞∫
0

∫∫
E×E\diag

Fp(Ptf(x), Ptf(y)) J(dx, dy)dt f ∈ Lp(m),

where
Fp(a, b) := |b|p − |a|p − pa⟨p−1⟩(b− a), a, b ∈ R,

is the Bregman divergence and a⟨κ⟩ := |a|κ sgn(a).
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SEMIFRACTIONAL DERIVATIVES AND
SEMISTABLE LÉVY PROCESSES

PETER KERN, SVENJA LAGE, MARK M. MEERSCHAERT

We introduce semi-fractional derivatives using a classical semigroup approach for the
class of semistable Lévy processes. These are Lévy processes fulfilling a self-similarity
property on a discrete scale and generalize α-stable Lévy processes with continuous scal-
ing property. For α ∈ (0, 1) the semi-fractional derivatives can be seen as generalized
fractional derivatives in the sense of Kochubei [6] or as convolution-type derivatives in
the sense of Toaldo [7]. Point source solutions of corresponding semi-fractional diffusion
equations are given by the probability densities of semistable Lévy processes. We further
show that solutions of certain semi-fractional diffusion equations of order α ∈ (1, 2) in
space correspond to certain diffusion equations with semi-fractional derivative of order
1/α ∈ (1

2
, 1) in time, called space-time duality in case of ordinary fractional derivatives

[1, 2]. In addition, we develop a Grünwald-Letnikov type formula to compute semi-
fractional derivatives of order α ∈ (0, 2) \ {1} numerically. The presentation is based on
results in [3, 4, 5].
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SHARP FRACTIONAL HARDY INEQUALITIES WITH
A REMAINDER FOR 1 < p < 2

MICHAŁ KIJACZKO

Our purpose is to present (weighted) fractional Hardy inequalities with a remainder and
fractional Hardy–Sobolev–Maz’ya inequalities valid for 1 < p < 2. We provide a general
nonlinear ground-state representation, being a generalisation of the well-known result of
Frank and Seiringer [1] to the case 1 < p < 2.
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MEASURABLE SEMIFLOWS GENERATED BY DIFFERENTIAL
EQUATIONS

MAREK KRYSPIN

In our research, we focused on measurable semiflows generated by systems of ordi-
nary differential equations with delay and parabolic differential equations with changing
delay. Such systems are important for mathematical ecology to study dependence be-
tween species. Our results concern dynamical behavior like Lyapunov exponents, Flo-
quet subspaces, exponential separation in such semiflows and its continuous dependence
on coefficients (see [1, 2, 3, 4, 5] for more details).

Based on a joint work with Janusz Mierczyński, Sylvia Novo and Rafael Obaya.

References

[1] J. Mierczyński, S. Novo and R. Obaya, Principal Floquet subspaces and exponential separations of
type II with applicactions to random delay differerntial equations, Discrete Contin. Dyn. Syst. 38
(2018), no. 12, 6163–6193.

[2] J. Mierczyński, S. Novo and R. Obaya, Lyapunov exponents and Oseledets decomposition in random
dynamical systems generated by systems of delay differential equations, Commun. Pure Appl. Anal.
19, no. 4, 2235–2255.

[3] J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive
random dynamical systems. I. General theory, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5329–
5365.

[4] J. Mierczyński and W. Shen, Principal Lyapunov exponents and principal Floquet spaces of positive
random dynamical systems. III. Parabolic equations and delay systems, J. Dynam. Differential
Equations 28 (2016), no. 3–4, 1039–1079.

[5] M. Kryspin, J. Mierczyński, Parabolic differential equations with bounded delay. Journal of Evolu-
tion Equations (2023), 1-37.



Poster session, Tuesday, March 21, 15:00-16:25

HEAT CONTENT FOR LÉVY PROCESSES

JULIA LENCZEWSKA

Let d ∈ N and X = (Xt)t≥0 be a Lévy process in Rd. For an open set Ω ⊂ Rd, we
consider the quantity

HΩ(t) =

∫
Ω

Px(Xt ∈ Ω) dx,

called the heat content related to the process X. It is known [1] that if X has finite
variation, then

HΩ(t) = |Ω| − tPerX(Ω) + o(t) as t→ 0+,

where PerX is the perimeter related to the process X. We establish the next terms of the
asymptotic expansion of HΩ(t), under mild assumptions on the characteristic exponent
ψ of the process X. Our results are new even for the α-stable processes.

References

[1] W. Cygan, T. Grzywny, Heat content for convolution semigroups. Journal of Mathematical Analysis
and Applications 446(2):1393–1414, 2017.

[2] T. Grzywny, J. Lenczewska, Asymptotic expansion of the nonlocal heat content. Studia Mathematica,
2023.



Poster session, Tuesday, March 21, 15:00-16:25

HEAT KERNELS OF DISCRETE FEYNMAN–KAC OPERATORS

MATEUSZ ŚLIWIŃSKI (JOINT WORK WITH WOJCIECH CYGAN, KAMIL KALETA AND
RÉNE SCHILLING)

We present results of our investigation of a particular discrete-time counterpart of
the Feynman–Kac semigroup with a confining potential in a countably infinite space.
These findings are a continuation of our work, described in detail in the paper [1]. We
focus on Markov chains with the direct step property, which is satisfied by a wide range
of typically considered kernels. We propose a characterization for asymptotic intrinsic
ultracontractivity (aIUC), expressed in terms of transition densities of the underlying
Markov chains as well as potentials appearing in the semigroups. We also investigate
links between aIUC of Feynman–Kac semigroups and the uniform ergodicity of their
intrinsic semigroups.
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ROBUST NONLINEAR NONLOCAL TRACE SPACES

FLORIAN GRUBE (JOINT WORK WITH MORITZ KASSMANN)

Let Ω ⊂ Rd be a bounded Lipschitz domain. We answer the following question: For
which functions g : Ωc → R can we find a weak solution to the Dirichlet problem{

(−∆)spu = 0 in Ω

u = g on Ωc.

Here (−∆)sp is the fractional p-Laplacian for s ∈ (0, 1) and 1 < p < ∞ defined by

(−∆)spu(x) := (1− s) lim
ε→0+

∫
Bε(x)c

|u(x)− u(y)|p−2 u(x)− u(y)

|x− y|d+sp
dy.

By a nonlocal Green-Gauß formula, the appropriate function space for weak solutions is
V s,p(Ω |Rd) := {u : Rd → R m.b. | [u]V s,p(Ω |Rd) < ∞}, where

[u]V s,p(Ω |Rd) := (1− s)

∫
(Ωc×Ωc)c

|u(x)− u(y)|p

|x− y|d+sp
d(x, y),

endowed with the norm ∥u∥V s,p(Ω |Rd) =
(
∥u∥pLp(Ω) + [u]V s,p(Ω |Rd)

)1/p. We are particularly
interested in the asymptotics as s → 1−. Recall that −(−∆)sp converges to the p-Laplacian
up to a constant.

We provide Banach spaces T s,p(Ωc) of functions defined on Ωc such that trace map

Trs : V s,p(Ω |Rd) → T s,p(Ωc), u 7→ u|Ωc

is continuous and linear and there exists a continuous linear right inverse
Exts : T s,p(Ωc) → V s,p(Ω |Rd).

The norm of the operators depend on Ω, a lower bound on s as well as a lower and upper
bound on p. Furthermore, we recover in the limit:

∥Trsu∥T s,p(Ωc) → ∥u|∂Ω∥W 1−1/p,p(∂Ω) as s → 1−

for any u ∈ W 1,p(Rd).
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